

Pymote documentation

This document refers to the Pymote version 0.2.2

	Date

	May 11, 2018

	Installation
	Requirements

	Windows

	Linux (Ubuntu)

	Starting Pymote
	Interactive console (IPython)

	Simulation GUI

	Tutorials
	Hello distributed world

	Reference
	Sensors

	Network Generator

	Pymote configuration

	Developer Guide
	Distributing to PyPI

	Running tests

	Writing documentation

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://docs.python.org/3/glossary.html#glossary]

Installation

This document assumes you are familiar with using command prompt or shell. It should outline the necessary steps to install software needed for using Pymote.

Requirements

	Python [http://www.python.org] 2.7

	Setuptools [http://pypi.python.org/pypi/setuptools]

	NumPy [http://numpy.scipy.org]

	SciPy [http://www.scipy.org]

	Matplotlib [http://matplotlib.org/] 1.2

	PySide [http://qt-project.org/wiki/PySide] (for gui)

	IPython [http://ipython.org/]

	NetworkX [http://networkx.lanl.gov/]

	PyPNG [https://github.com/drj11/pypng]

If you don’t have all required packages already installed and/or want them installed in an isolated environment (see note below) please follow the instructions for your OS in the following sections.

Note

Since there can be only one version of any package installed systemwide in some cases this can result in situation where two programs need different versions of the same package. This is resolved by using isolated virtual environments.

[image: ../_images/virtualenv_system.png]
Virtual environments live in a separate directories and they are independent form systemwide Python installation.

Alternatively, if none of the above is your concern, although not recommended, all required packages can be installed systemwide using their respective instructions for appropriate OS and then Pymote can be installed by using:

> pip install pymote

Windows

Windows version can be installed in an isolated environment very easy:

	Install WinPython [https://winpython.github.io/] 2.7. WinPython has included python and all required packages inside simple exe installer and they are all installed one relocatable * directory.

	*

	After directory reloacation change links in headers of Scripts/ipymote and Scripts/pymote-simgui and paths in Lib/site-packages/easy_install.pth and Lib/site-packages/Pymote.egg-link.

	Run WinPython Command Prompt.exe located in WinPython installation dir and install latest official version of Pymote with pip install pymote

Note

For latest development version instead of pip intall pymote use pip install -e git+https://github.com/darbula/pymote.git#egg=Pymote and for upgrade after git pull use run python setup.py develop inside pymote dir.

For starting Pymote interactive console just run ipymote from the WinPython Command Prompt, and for simulation GUI run pymote-simgui. For more details refer to Starting Pymote.

Alternatively, installation can be done using Windows virtualenv installation but it is much more involved and not recommended.

Linux (Ubuntu)

Python 2.7 should already be installed on all new releases of Linux.

Install packages required for getting and compiling the source:

$ sudo apt-get install git libatlas-dev libpng12-dev libfreetype6 libfreetype6-dev g++ libzmq-dev liblapack-dev gfortran python-dev build-essential

Virtualenv

Install pip and virtualenv:

$ sudo apt-get install python-pip python-virtualenv

Create virtual environment:

$ virtualenv pymote_env --system-site-packages

Warning

If you want to avoid using –system-site-packages then PySide package has to be installed in virtualenv which is slightly involved or time and disk-space consuming. Both procedures are described below in PySide section.

Activate virtual environment:

$ source pymote_env/bin/activate

Required packages

Install required python packages into virtual environment:

(pymote_env)$ pip install numpy scipy ipython matplotlib networkx pypng

IPython notebook

Optionally for IPython notebook install these:

(pymote_env)$ pip install tornado pyzmq pygments jinja2

PySide

Installing PySide into virtual environment can take some skill or time and disk space. To avoid this, it can be installed systemwide (if –system-site-packages option is used when creating virtualenv, as noted above) using these instructions [http://qt-project.org/wiki/PySide_Binaries_Linux] or simply like this:

$ sudo add-apt-repository ppa:pyside
$ sudo apt-get update
$ sudo apt-get install python-pyside

If you really want to install PySide into virtual environment quick option is to follow this solution [http://stackoverflow.com/a/1962076] or simmilar and even better solution [http://stackoverflow.com/a/8160111]

More time consuming option is to use pip. In this case you’ll have to install packages needed for compilation using following commands:

$ sudo apt-get install cmake qt4-qmake qt-sdk
(pymote_env)$ pip install pyside

Pymote

Finally, in order to download and install Pymote and all other required packages there are two aviliable options, use one of them:

	Stable: for latest stable version use package from PyPI:

(pymote_env)> pip install pymote

	Development: to install latest development version of the Pymote use source from github repo:

(pymote_env)> pip install -e git+https://github.com/darbula/pymote.git#egg=Pymote

Starting Pymote

Before starting, make sure that virtual environment is activated and run ipymote for interactive console or pymote-simgui for simulation GUI. For more details refer to Starting Pymote.

Starting Pymote

Pymote features interactive console based on IPython and simulation GUI.

[image: ../_images/pymote_console_gui.png]
Pymote console and GUI

Interactive console (IPython)

To use Pymote from the interactive console (IPython) start provided program
ipymote with previously activated virtual environment:

> ipymote

Note

If virtualenv is used make sure that virtual environment is activated (linux, windows) and if WinPython is used then run ipymote from WinPython Command Prompt.

Pymote can also be started by starting IPython directly and using dedicated pymote profile:

> ipython --profile=pymote

Note

Pymote profile files should be present inside
pymote_env/.ipython/profile_pymote/ipython_config.py
or ~/.ipython/profile_pymote/ipython_config.py file created during Pymote installation.

Simulation GUI

Pymote features simulation GUI which can be started as standalone application using
pymote-simgui (in Windows pymote-simgui.exe).

Note

If pymote is installed in virtual environment then pymote-simgui starts inside this
environment. When network pickle is opened in simulator all algorithms this network is
referencing must be importable from virtual environment. The easy and proper way to ensure that
the algorithms are importable is to use bootstrap algorithms package that can be found in
pymote-algorithms-bootstrap [https://github.com/darbula/pymote-algorithms-bootstrap]
and follow the instructions found there.

Simulation GUI running from the interactive console

Very convenient way of starting and working with the GUI is from the interactive console by running simulationgui.py like this:

In [1]: %run path/to/pymote/gui/simulationgui.py

The gui event loop is separated from the console. Simulation window can be accessed by using simgui and network in the simulator window by using simgui.net so all simulation objects (network, nodes, messages…) are fully inspectable and usable via console.

Tutorials

Tutorials assume that the Pymote and all required packages are installed. If not, please refer to
the Installation section of this documentation.

Hello distributed world

This tutorial demonstrates a distributed version of the classic Hello world example.
Tutorial is currently available in form of IPython notebook which can be
viewed [http://nbviewer.ipython.org/url/raw.github.com/darbula/pymote/master/docs/static/notebooks/hello_distributed_world.ipynb]
and downloaded.

Reference

	Release

	0.2.2

	Date

	May 11, 2018

	Sensors
	Real world sensors

	Knowledge sensors

	Composite sensor

	Network Generator
	Methods

	Default procedure

	Pymote configuration
	Configuration module

	Global settings

Sensors

Real world sensors

	AoASensor

	

	DistSensor

	

Knowledge sensors

	NeighborsSensor

	

	TruePosSensor

	

Composite sensor

Network Generator

Implementation of different methods for automated network creation.
It defines parameters (conditions) that generated network must satisfy.

Methods

Default procedure

For any generator method network attributes take default priorities
which are defined like this:

	first network is created in given environment with n_count number
of nodes and comm_range communication range

	
	if connected is True it must be satisfied, if not satisfied initially:

	
	gradually increase number of nodes up to n_max

	if comm_range is None gradually increase nodes commRange

	if still not connected raise an exception

	
	if degree condition is defined and current network degree is

	
	lower - repeat measures from the last step to increase current
network degree

	higher one degree or more - try countermeasures i.e. decrease number of
nodes and commRange but without influencing other defined and already
satisfied parameters (connected)

Pymote configuration

Pymote initial configuration is defined by its global settings

Implementation of different methods for automated network creation.

Configuration module

Global settings

Below is list of current Pymote global settings.

Developer Guide

	Distributing to PyPI
	Windows

	Running tests
	Tests coverage

	Writing documentation
	Intersphinx

	Readthedocs.org

Distributing to PyPI

http://docs.python.org/2/distutils/index.html#distutils-index
https://python-packaging-user-guide.readthedocs.org/en/latest/current/

Windows

Install required packages:

> pip install twine wheel

Create C:\Users\<user>\.pypirc file:

[distutils]
index-servers =
 pypi

[pypi]
repository: http://pypi.python.org/pypi
username: <username>
password: <password>

[server-login]
repository: http://pypi.python.org/pypi
username: <username>
password: <password>

Issue these commands:

> setx HOME C:\Users\<user>
> python setup.py sdist bdist_wheel
> twine upload dist/*

Running tests

To execute tests install nose pip install nose and run it inside pymote
directory. All tests should be found recursively scanning directories.
To run all tests run this from root pymote directory:

nosetests -v

To run selected test module:

nosetests -v pymote.tests.test_algorithm

Tests coverage

For tests coverage install Coverage [http://nedbatchelder.com/code/coverage/cmd.html] package and run it:

pip install coverage
coverage run --source=pymote setup.py nosetests

Configuration file [http://nedbatchelder.com/code/coverage/config.html#config] is in .coveragerc.

Make report in console or html:

coverage report -m
coverage html

For integration with coveralls [https://coveralls.io] refer to coverall readme [https://github.com/coagulant/coveralls-python/blob/master/README.rst].

Writing documentation

This section describes certain not obvious details in writing documentation for Pymote in sphinx.

Intersphinx

To auto-reference external document in with intersphinx:

	set intersphinx_mapping [http://sphinx-doc.org/ext/intersphinx.html#confval-intersphinx_mapping] in conf.py:

intersphinx_mapping = {
 'python': ('http://docs.python.org/', None),
 'numpy': ('http://docs.scipy.org/doc/numpy/', None),
 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None),
}

	reference in docs with `:py:<type>:`<ref>` i.e. :py:class:`numpy.poly1d`. For finding reference manually read on.

Finding reference

If <type> is not explicitly known it can be found out from objects.inv files found in URLs in intersphinx_mapping above.

To get and decode objects.inv for numpy:

$ wget http://docs.scipy.org/doc/numpy/
$ ipython

In python:

import zlib
with open("objects.inv","r") as f:
 inv_lines = f.readlines()
lista = zlib.decompress(''.join(inv_lines[4:])).split('\n')
with open('objects_numpy.inv','w') as f:
 for line in lista:
 f.write(line+'\n')

To find reference for numpy.poly1d serach for it in decoded file objects_numpy.inv.

The line should include word class

In documentation include :py:class:`numpy.poly1d`

For scipy.stats.norm:

find scipy.stats.norm -> data -> :py:data:`scipy.stats.norm`

Readthedocs.org

In order for readthedocs.org to make documentation it needs to have certain packages accessible.

	On readthedocs.org admin page check option Use virtualenv And Use system packages and in Requirements file put the name to the requirements file in repo (i.e. requirements.txt).

	Make readthedocs.py module and put it in docs folder with Mock class found here [http://read-the-docs.readthedocs.org/en/latest/faq.html#i-get-import-errors-on-libraries-that-depend-on-c-modules]

	In documentation conf.py put the following lines to import mock class for certain modules that are not present in virtual environment.

if os.environ.get('READTHEDOCS', None) == 'True':
 sys.path.insert(0,'.')
 from readthedocs import *
 sys.path.pop(0)

Index

Windows virtualenv installation

Warning

This installation procedure is much more involved then the one using WinPython as described in Installation. Without good reason please use WinPython version.

Python

Install Python 2.7 using appropriate installer: Python 2.7.3 x86 MSI Installer [http://www.python.org/ftp/python/2.7.3/python-2.7.3.msi]

Warning

After installation append paths to python.exe (i.e. C:\Python27) and path to directory
Scripts (i.e. C:\Python27\Scripts) in the PATH
environment variable [http://superuser.com/a/284351/169714].

Virtualenv

Instead of installing packages systemwide in these instructions we use virtualenv to create an
isolated Python environment and then install packages into this environment. This procedure is
more demanding but has the advantage of being independent from the rest of the system.

To install virtualenv first install distribute and pip:

	download distribute_setup.py [http://python-distribute.org/distribute_setup.py]

	download get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py]

	enter elevated/administrator command prompt: right click on the Command prompt icon and select
Run as administrator

[image: ../_images/command_prompt_administrator.png]

	Navigate to the directory where the files were downloaded (i.e. C:\Users\user\Desktop) and
run following commands:

C:\> cd Users\user\Desktop
C:\Users\user\Desktop> python distribute_setup.py
C:\Users\user\Desktop> python get-pip.py

	After this distribute should be installed so downloaded files and temporary build directory
can be deleted.

	Install virtualenv:

C:\Users\user\Desktop> pip install virtualenv

Note

When the installation of virtualenv is completed the elevated/administrator Command prompt
is not needed anymore so it can be closed. All subsequent commands should go in the regular
Command prompt.

Pymote virtual environment

	To make a virtual environment in which all other packages are going to be installed first
navigate to the directory in which you want to set up environment. This can be any directory and
in the following steps we use C:\Users\user\Documents:

C:\Users\user> cd C:\Users\user\Documents
C:\Users\user\Documents> virtualenv pymote_env
New python executable in pymote_env\Scripts\python.exe
Installing setuptools................done.
Installing pip...................done.

This command has made a new directory pymote_env inside C:\Users\user\Documents with
separate python interpreter and two necessary packages.

	Activate environment:

C:\Users\user\Documents> pymote_env\Scripts\activate
(pymote_env) C:\Users\user\Documents>

Note

The (pymote_env) prefix to prompt in the last line indicates that newly created environment
is activated. All subsequently installed packages from this modified command prompt end up in
the activated environment. Environment can be deactivated with command deactivate.

	Set PYMOTE_ENV environment variable as path to pymote_env directory. This way all
executables that are not being started from the modified command prompt should know where
to look for the environment and its packages.

Note

In Windows Vista and later use command setx PYMOTE_ENV "C:\path\to\pymote_env" to save
environment variable permanently. In XP use the normal way through Control Panel (instructions [http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx?mfr=true]).

	Launch text editor (use Notepad++ [http://notepad-plus-plus.org/download] or WordPad, do not
use plain Notepad) and open pymote_env\Scripts\activate.bat file. To display the .bat
files in open dialog you have to chose All Documents (*.*) from the file types dropdown.

	Add line set IPYTHONDIR=%VIRTUAL_ENV%\.ipython below the line that sets VIRTUAL_ENV
environment variable, near the top. Save the document. This way IPython package which is not
yet fully compatible with the virtualenv knows where to look for its conguration files.

	Open pymote_env\Scripts\deactivate.bat in text editor and insert line set IPYTHONDIR=
just below the line @echo off, near the top of the document. Save the document.

Warning

After setting the environment variable and modifying activate.bat and deactivate.bat
scripts you must restart the Command prompt and reenter/reactivate pymote_env. If all goes
well commands echo %PYMOTE_ENV% and echo %IPYTHONDIR% should print environment paths.

Required packages

All required packages are installed in the environment created in the previous section so before
continuing ensure that the environment is activated. Active environment is indicated with prompt
prefix i.e. (pymote_env).

NumPy and SciPy

Since normal installation of these packages requires compiling we make a shortcut by using
precompiled binaries and installing them into virtual environment using
this solution [http://stackoverflow.com/a/6753898/1247955]:

	Download
NumPy binary numpy-1.7.0-win32-superpack-python2.7.exe [http://sourceforge.net/projects/numpy/files/NumPy/1.7.0/numpy-1.7.0-win32-superpack-python2.7.exe/download] and
SciPy binary scipy-0.11.0-win32-superpack-python2.7.exe [http://sourceforge.net/projects/scipy/files/scipy/0.11.0/scipy-0.11.0-win32-superpack-python2.7.exe/download].

Note

Newer versions of NumPy [http://sourceforge.net/projects/numpy/files/NumPy/] and
SciPy [http://sourceforge.net/projects/scipy/files/scipy/] may be available.

	Do not run downloaded .exe files as that would install them systemwide. Instead extract
them (with 7-zip [http://www.7-zip.org/download.html]) in some temporary
directory i.e. C:\Users\user\Desktop.

	Based on your processor support of SSE [http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions]
instructions (probably sse3, see the note below) install appropriate extracted .exe files
(nosse|sse2|sse3) using easy_install command:

(pymote_env) C:\Users\user\Desktop> easy_install numpy-1.7.0-[nosse|sse2|sse3].exe
(pymote_env) C:\Users\user\Desktop> easy_install scipy-0.11.0-[nosse|sse2|sse3].exe

Note

SSE3 instructions are supported by all
reasonably modern processors [http://en.wikipedia.org/wiki/SSE3#CPUs_with_SSE3]. If
you’re not sure try CPU-Z [http://www.softpedia.com/get/System/System-Info/CPU-Z.shtml].

After installation all downloaded and extracted files can be deleted.

Matplotlib

Matplotlib package
is installed almost the same way as NumPy and SciPy packages in previous section using the
appropriate binary matplotlib-1.2.0.win32-py2.7.exe [https://github.com/downloads/matplotlib/matplotlib/matplotlib-1.2.0.win32-py2.7.exe].
The only difference is in the 3rd step where the extracted contents from directory
PLATLIB should be copied to pymote_env/Lib/site-packages/ directory:

C:\Users\user\Desktop> xcopy /s matplotlib-1.2.0.win32-py2.7\PLATLIB* %PYMOTE_ENV%\Lib\site-packages

Pyreadline

For Pyreadline package use easy_install as pip currently installs version
1.7.1.dev-r0 which does not work well with IPython:

(pymote_env)> easy_install pyreadline

PySide

For Pymote GUI part of the library PySide Qt bindings for Python should be installed. This is
achieved using this solution [http://stackoverflow.com/a/4673823/1247955], that is, running
following commands:

(pymote_env)> easy_install PySide
(pymote_env)> python pymote_env\Scripts\pyside_postinstall.py -install

Pymote

Finally, in order to download and install Pymote and all other required packages there are two
aviliable options, use one of them:

	Stable: for latest stable version use package from PyPI:

(pymote_env)> pip install pymote

	Development: to install latest development version of the Pymote use source from github repo:

(pymote_env)> pip install -e git+https://github.com/darbula/pymote.git#egg=Pymote

To list all packages installed in the environment run pip freeze. The output should look
something like this:

(pymote_env)> pip freeze
Pymote==0.1.1
ipython==0.13.1
matplotlib==1.2.0
networkx==1.7
numpy==1.6.2
pypng==0.0.14
pyreadline==1.7.1
pyside==1.1.2
scipy==0.11.0

Starting Pymote

Before starting, make sure that virtual environment is activated windows and run ipymote for interactive console or pymote-simgui for simualtion GUI. For more details refer to Starting Pymote.

Additional customization

The recommended way to avoid starting command prompt, activating the virtual environment and running ipymote in it is to make a shortcut to the ipymote.exe file on the desktop, taskbar or start menu.

You can customize prompt can be additionaly customized by right clicking on the shortcut and selecting Properties from the menu. Highly recommended customizations are:

	in Options tab enable QuickEdit mode

	in Font tab change font to Consolas and size to 16

	in Layout tab increase Screen buffer size Height from 300 to at least 3000

The loading of the correct environment when shortcut is double clicked is possible via previously set PYMOTE_ENV environment variable which points to the environment location.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Pymote documentation

 		
 Installation

 		
 Requirements

 		
 Windows

 		
 Linux (Ubuntu)

 		
 Virtualenv

 		
 Required packages

 		
 Pymote

 		
 Starting Pymote

 		
 Starting Pymote

 		
 Interactive console (IPython)

 		
 Simulation GUI

 		
 Simulation GUI running from the interactive console

 		
 Tutorials

 		
 Hello distributed world

 		
 Reference

 		
 Sensors

 		
 Real world sensors

 		
 Knowledge sensors

 		
 Composite sensor

 		
 Network Generator

 		
 Methods

 		
 Default procedure

 		
 Pymote configuration

 		
 Configuration module

 		
 Global settings

 		
 Developer Guide

 		
 Distributing to PyPI

 		
 Windows

 		
 Running tests

 		
 Tests coverage

 		
 Writing documentation

 		
 Intersphinx

 		
 Readthedocs.org

_images/pymote_console_gui.png
Networkx @ python Jﬁw
IPW]

iib [

_images/virtualenv_system.png
Systemwide Python installation
\Program files\Python27

Virtual environments

.\pymote_env. \envdir2 _\envdir3

other
packages

_images/command_prompt_administrator.png

